Performance Analysis of SVM and Random Forest Algorithms in the Case of the Influence of Music on Mental Health
DOI:
https://doi.org/10.5281/zenodo.15130408Keywords:
Data Mining , Mental health, Random Forest, SVM, Data Music TherapyAbstract
Mental health disorders are conditions that impress a person's behavior, mindset, and emotions. According to WHO data, the rate of mental disorders in Asia has increased significantly in the past two decades, with about one-fifth of the world's adolescent population experiencing stress each year. Music has long been known to have a positive influence on mental health, and music therapy is used as one approach to assist individuals in improving social, mental, and physical conditions. In this study, the authors used data mining techniques to identify relevant patterns regarding the influence of music on mental health. Two classification algorithms, namely the Support Vector Machine (SVM) and Random Forest, is used to analyze and characterize the data. SVM is known to excel at managing high-dimensional data, while Random Forest is effective at handling data with missing outliers and features. This study purpose to oppose the performance of the two algorithms in classifying the influence of music on mental health to identify the superior algorithm in this context. The Random Forest algorithm gets 93% accuracy and SVM gets 95% accuracy, the hyperparameter tuning on the SVM algorithm has a better performance than Random Forest with an accuracy score of 97% for SVM, while for Random Forest it gets an accuracy score of 94%. The results of the study are expected to provide insight into the use of music as a mental health therapy tool.
Downloads
References
Aanda, S., Annisafitri, A., Angelia, M., Augilera, S. C., & Nurdiantami, Y. (2022). A Literature Study of the Influence of Music on Student Mental Health. Journal of Education and Counseling, 4(5), 2580–2588. https://journal.universitaspahlawan.ac.id/index.php/jpdk/article/view/7002
Allyssa, J. P., Malik, R., & Drew, C. (2023). The Influence of Music on Mental Health in Tarumanagara University Students Class of 2020. ... Health..., 4(September), 1889–1896. http://journal.universitaspahlawan.ac.id/index.php/jkt/article/view/16245%0Ahttp://journal.universitaspahlawan.ac.id/index.php/jkt/article/download/16245/13306
Dessy Kusumaningrum, & Imah, E. M. (2020). A Comparative Study of Mental Workload Classification Algorithm Based on EEG Signals. Journal of Intelligent Systems, 3(2), 133–143. https://doi.org/10.37396/jsc.v3i2.69
Fadilah, W. F., Sayekti, S., Sunaryanti, H., Tri, R., School, H., & Mamba's Health Sciences, T. (2024). The Effect of Music Therapy on Student Mental Health. 5(2), 445–452. http://jurnal.globalhealthsciencegroup.com/index.php/JLH
Indra Budi Trisno, M. A. R. (2023). ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING WEBINAR. Journal of Independent Service, 2(11), 2307–2315. https://doi.org/10.31862/9785426311961
Intan Permata, & Esther Sorta Mauli Nababan. (2023). Application Of Game Theory In Determining Optimum Marketing Strategy In Marketplace. Journal of Research in Mathematics and Natural Sciences, 2(2), 65–71. https://doi.org/10.55606/jurrimipa.v2i2.1336
Isnain, A. R., Sakti, A. I., Alita, D., & Marga, N. S. (2021). Public Analysis Sentiment on the Jakarta Government's Lockdown Policy Using the SVM Algorithm. Journal of Data Mining and Information Systems, 2(1), 31. https://doi.org/10.33365/jdmsi.v2i1.1021
Khusna, N. F., Rahmah, A., & Nur, R. K. (2024). Implementation of Random Forest in Stunting Case Classification in Toddlers with Hyperparameter Tuning Grid Search. 2024(Same), 791–801.
Rahayu, K., Fitria, V., Septhya, D., Rahmaddeni, R., & Efrizoni, L. (2023). Text Classification to Detect Depression and Anxiety in Twitter Users Based on Machine Learning. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 108–114. https://doi.org/10.57152/malcom.v3i2.780
Rahman Wahid, M. A., Nugroho, A., & Halim Anshor, A. (2023). Prediction of lung cancer with linear regression algorithm. Bulletin of Information Technology (BIT), 4(1), 63–74. https://doi.org/10.47065/bit.v4i1.501
Rijal, M., Aziz, F., & Abasa, S. (2024). Depression Prediction: Recent Innovations in Mental Health Journal Pharmacy and Application. Journal Pharmacy and Application of Computer Sciences, 2(1), 9–14. https://doi.org/10.59823/jopacs.v2i1.47
Sebayang, E. R. B., Chrisnanto, Y. H., & Melina. (2023). Mental Health Data Classification in the Technology Industry Using the Random Forest Algorithm. IJESPG Journal, 1(3), 237–253.
Septhya, D., Rahayu, K., Rabbani, S., Fitria, V., Rahmaddeni, R., Irawan, Y., & Hayami, R. (2023). Implementation of Decision Tree Algorithm and Support Vector Machine for Lung Cancer Disease Classification. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(1), 15–19. https://doi.org/10.57152/malcom.v3i1.591
Sub'haan, F., Sinaga, S., & Winangsit, E. (2023). Music Therapy to Improve Mental Health: A Literature Review in Psychodynamic Perspectives. Assertive: Islamic Counseling Journal, 02(1), 1–12. https://ejournal.uinsaizu.ac.id/index.php/assertive/article/view/8017%0Ahttps://ejournal.uinsaizu.ac.id/index.php/asertif/
Titik Misriati, R. A. (2024). Optimization of Random Forest and Support Vector Machine with Hyperparameter GridSearchCV for PrimaKu Review Sentiment Analysis. 5(4), 1342–1351. https://doi.org/10.47065/josh.v5i4.5347
Zai, C. (2022). Implementation of Data Mining as Data Processing. Journal of Data Portal, 2(3), 1–12. http://portaldata.org/index.php/portaldata/article/view/107
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Karisma Septa Kresna, Kusnawi, S.Kom., M.Eng. (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Share
Most read articles by the same author(s)
- Raffa Nur Listiawan Dhito Eka Santoso, Kusnawi, Optimization of Stress Classification Among Students Using Random Forest Algorithm , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 2 (2025): April
- Tegar Wirawan, Kusnawi, Performance Analysis of Support Vector Machine and Gradient Boosting Machine Algorithms for Heart Disease Prediction , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 2 (2025): April
- Muhammad Irvan Shandika, Kusnawi, S.Kom, M.Eng, AI Web-based Computer Service Management System at PUSCOM , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 3 (2025): July
- RIYAN BAYU SATRIYA, Kusnawi Kusnawi, Random Search Optimization Using Random Forest Algorithm For Liver Disease Prediction , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 3 (2025): July
Similar Articles
- Hasan Abdullah Muhammad, Fitri Adini Firdaus, Ni Ketut Mega Diana Putri, Customer Relationship Management (CRM) Strategy of PT ASDP Indonesia Ferry (Persero): A Customer Satisfaction and Digital Transformation Approach , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 2 (2025): April
- Mega Fitri Yani, Cindy Muhdiantini, Syifa Nur Aini, Risk Management in Financial Technology: A Systematic Literature Reviewto Support Sustainability and Security of Digital Financial Services , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 1 (2025): January
- M. Ilham AlFatrah, Hery Sudaryanto, H. A. Danang Rimbawa, Implementasi Teknologi Mediapipe Menggunakan Metode CNN Berbasis Website Untuk Pengamanan VVIP Dalam Mobil , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 3 (2025): July
You may also start an advanced similarity search for this article.