Performance Analysis of Support Vector Machine and Gradient Boosting Machine Algorithms for Heart Disease Prediction

Authors

  • Tegar Wirawan AMIKOM University Yogyakarta, Indonesia Author
  • Kusnawi AMIKOM University Yogyakarta, Indonesia Author

DOI:

https://doi.org/10.5281/zenodo.15126239

Keywords:

Heart disease, Support Vector Machine, Gradient Boosting Machine, Prediction, Machine Learning

Abstract

Cardiovascular disease ranks among the primary causes of mortality globally, with death rates rising each year. Assessing heart disease risk is crucial for enhancing the efficiency of prevention and treatment strategies. This study seeks to evaluate the effectiveness of two machine learning techniques, namely Support Vector Machine and Gradient Boosting Machine, in forecasting heart disease using a dataset obtained from Kaggle. The research process starts with gathering data, followed by exploratory analysis, preprocessing through label encoding, handling class imbalance with SMOTE, and normalizing data using Standard Scaler. Features were selected using the Correlation Thresholding method. Subsequently, the dataset was divided into training and testing sets to develop predictive models. The model performance was assessed using evaluation metrics, including accuracy, precision, recall, and F1-Score. The findings indicate that the Gradient Boosting Machine outperformed the Support Vector Machine, achieving an accuracy of 98% compared to SVM's accuracy of 93%. This research is expected to contribute to healthcare practices by enabling early detection of heart disease risks. Future research is recommended to explore other algorithms or employ more diverse datasets to achieve better results

Downloads

Download data is not yet available.

References

Amelia, Reni. 2017. “Faktor-Faktor Yang Mempengaruhi Status Kesehatan.” Sosio Konsepsia 2(2): 137–52. doi:10.33007/ska.v2i2.772.

Corey Wade, Kevin Glynn. 2020. Gradient Boosting Machines. Germany: Packt Publishing Ltd.

Erdania, Erdania, M. Faizal, and Rima Berti Anggraini. 2023. “FAKTOR – FAKTOR YANG BERHUBUNGAN DENGAN KEJADIAN PENYAKIT JANTUNG KORONER (PJK) Di RSUD Dr. (H.C.) Ir. SOEKARNO PROVINSI BANGKA BELITUNG TAHUN 2022.” Jurnal Keperawatan 12(1): 17–25. doi:10.47560/kep.v12i1.472.

Huda, Irkham Abdaul. 2020. “Perkembangan Teknologi Informasi Dan Komunikasi (Tik).” Jurnal Pendidikan dan Konseling (JPDK) 2(1): 121–25. doi:10.31004/jpdk.v1i2.622.

Ingo Steinwart, Andreas Christmann. 2008. Support Vertor Machines. Germany: Springer International Publishing.

Munawar, Zen. 2021. “Manfaat Teknologi Informasi Di Masa Pandemi Covid-19.” Jurnal Sistem Informasi 03(02): 9. https://ejournal.unibba.ac.id/index.php/j-sika/article/view/692.

Parikesit Dito; Putranto Arli Aditya; Anurogo, Riza Arief. 2018. “Kontribusi Aplikasi Medis Dari Perkembangan Pembelajaran Mesin (Machine Learning) Terbaru.” Cermin Dunia Kedokteran 45(9): 700–703. http://www.kalbemed.com/DesktopModules/EasyDNNNews/DocumentDownload.ashx?portalid=0&moduleid=471&articleid=225&documentid=65.

Yudi Her Oktaviono. 2024. PENYAKIT JANTUNG. Jawa Timur: Airlangga University Press.

Zhang, Xian-Da. 2001. “Support Vector Machines ( SVM ) Support Vector Machines ( SVM ).” Gesture 23(6): 349–61.

Amelia, Reni. 2017. “Faktor-Faktor Yang Mempengaruhi Status Kesehatan.” Sosio Konsepsia 2(2): 137–52. doi:10.33007/ska.v2i2.772.

Corey Wade, Kevin Glynn. 2020. Gradient Boosting Machines. Germany: Packt Publishing Ltd.

Erdania, Erdania, M. Faizal, and Rima Berti Anggraini. 2023. “FAKTOR – FAKTOR YANG BERHUBUNGAN DENGAN KEJADIAN PENYAKIT JANTUNG KORONER (PJK) Di RSUD Dr. (H.C.) Ir. SOEKARNO PROVINSI BANGKA BELITUNG TAHUN 2022.” Jurnal Keperawatan 12(1): 17–25. doi:10.47560/kep.v12i1.472.

Huda, Irkham Abdaul. 2020. “Perkembangan Teknologi Informasi Dan Komunikasi (Tik).” Jurnal Pendidikan dan Konseling (JPDK) 2(1): 121–25. doi:10.31004/jpdk.v1i2.622.

Ingo Steinwart, Andreas Christmann. 2008. Support Vertor Machines. Germany: Springer International Publishing.

Munawar, Zen. 2021. “Manfaat Teknologi Informasi Di Masa Pandemi Covid-19.” Jurnal Sistem Informasi 03(02): 9. https://ejournal.unibba.ac.id/index.php/j-sika/article/view/692.

Parikesit Dito; Putranto Arli Aditya; Anurogo, Riza Arief. 2018. “Kontribusi Aplikasi Medis Dari Perkembangan Pembelajaran Mesin (Machine Learning) Terbaru.” Cermin Dunia Kedokteran 45(9): 700–703. http://www.kalbemed.com/DesktopModules/EasyDNNNews/DocumentDownload.ashx?portalid=0&moduleid=471&articleid=225&documentid=65.

Yudi Her Oktaviono. 2024. PENYAKIT JANTUNG. Jawa Timur: Airlangga University Press.

Zhang, Xian-Da. 2001. “Support Vector Machines ( SVM ) Support Vector Machines ( SVM ).” Gesture 23(6): 349–61.

Downloads

Published

02-04-2025

Issue

Section

Articles

How to Cite

Performance Analysis of Support Vector Machine and Gradient Boosting Machine Algorithms for Heart Disease Prediction. (2025). SITEKNIK: Sistem Informasi, Teknik Dan Teknologi Terapan, 2(2), 88-97. https://doi.org/10.5281/zenodo.15126239

Share

Similar Articles

You may also start an advanced similarity search for this article.