Optimization of Stress Classification Among Students Using Random Forest Algorithm

Authors

  • Raffa Nur Listiawan Dhito Eka Santoso AMIKOM University Yogyakarta, Indonesia Author
  • Kusnawi AMIKOM University Yogyakarta, Indonesia Author

DOI:

https://doi.org/10.5281/zenodo.15130385

Keywords:

Stress, Students, Random forest, Classification, Hyperparameter Tuning

Abstract

Stress is a condition of physical and psychological discomfort experienced by students due to academic pressure, demands from parents and teachers, and schoolwork. This stress can lead to physical tension, behavioral changes, and mental health problems if not handled properly.  Random Forest is a promising approach to analyze and classify student stress. The aim of this study is to classify stress among students to enable the development of targeted interventions to support student well-being and academic success. The dataset used was sourced from Kaggle and included 1100 datasets with 21 columns. The research stages included data preprocessing, exploratory data analysis, modeling, Decision tree classification and evaluation of the confusion matrix model and Deployment as a measure of stress level. Classification results were evaluated by calculating accuracy, precision, recall and f1-score for stress classes (low, medium and high). The results of this study resulted in an accuracy value before tuning of 87.27% and after tuning of 88.64%. This research can provide insights for schools, parents, and government to develop more effective strategies in addressing the problem of stress among students. The use of Random Forest algorithm is proven to be effective in analyzing and classifying stress, so that it can help in decision making and appropriate welfare interventions to tackle before stress reaches critical levels.

Downloads

Download data is not yet available.

References

Aldiansyah, S., & Saputra, R. A. (2023). Comparison of Machine Learning Algorithms for Land Use and Land Cover Analysis Using Google Earth Engine (Case Study: Wanggu Watershed). International Journal of Remote Sensing and Earth Sciences (IJReSES), 19(2), 197. https://doi.org/10.30536/j.ijreses.2022.v19.a3803

Ananda, R., Syaputri, W. I., Suhesni, T., & Rossadah, N. (2023). Perbandingan Pendidikan di Indonesia dan Pendidikan di Finlandia. JIIP - Jurnal Ilmiah Ilmu Pendidikan, 6(9), 6689–6694. https://doi.org/10.54371/jiip.v6i9.2812

Arifin Yusuf Permana, Hari Noer Fazri, M.Fakhrizal Nur Athoilah, Mohammad Robi, & Ricky Firmansyah. (2023). Penerapan Data Mining Dalam Analisis Prediksi Kanker Paru Menggunakan Algoritma Random Forest. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 3(2), 27–41. https://doi.org/10.55606/juitik.v3i2.472

Che Bakar, W. M. A., & Surat, S. (2022). Stres Akademik dan Strategi Daya Tindak dalam kalangan Pelajar: Satu Kajian Sistematik. Malaysian Journal of Social Sciences and Humanities (MJSSH), 7(3), e001330. https://doi.org/10.47405/mjssh.v7i3.1330

Clarasatin Rera Owa. (n.d.). https://unair.ac.id/post_fetcher/fakultas-ilmu-budaya-perkembangan-pendidikan-di-indonesia-dar i-masa-ke-masa/. Februari 20,2024. https://unair.ac.id/post_fetcher/fakultas-ilmu-budaya-perkembangan-pendidikan-di-indonesia-dari-masa-ke-masa/

Faiz, A., Soleh, B., Kurniawaty, I., & Purwati, P. (2021). Tinjauan Analisis Kritis Terhadap Faktor Penghambat Pendidikan Karakter di Indonesia. Jurnal Basicedu, 5(4), 1766–1777. https://doi.org/10.31004/basicedu.v5i4.1014

Fuji Astari, D., Herry Chrisnanto, Y., & Melina, M. (2024). Klasifikasi Tingkat Stres Saat Tidur Menggunakan Algoritma Random Forest. JATI (Jurnal Mahasiswa Teknik Informatika), 7(5), 3676–3684. https://doi.org/10.36040/jati.v7i5.7750

Husin, N. (2023). Komparasi Algoritma Random Forest, Naïve Bayes, dan Bert Untuk Multi-Class Classification Pada Artikel Cable News Network (CNN). Jurnal Esensi Infokom : Jurnal Esensi Sistem Informasi Dan Sistem Komputer, 7(1), 75–84. https://doi.org/10.55886/infokom.v7i1.608

Nangon, T. (2024). Prediksi Tahap Awal Penyakit Jantung Menggunakan Algoritma Random Forest (Studi Kasus RSIJ). Da’watuna: Journal of Communication and Islamic Broadcasting, 4(4), 1561–1567. https://doi.org/10.47467/dawatuna.v4i4.1882

Patil, S., Sultana, H. P., Gregorio, A. J., & ... (2021). Mind Stress Analysis of Students using Classification Techniques. Linguistica …, February. https://www.researchgate.net/profile/Abner-Fonseca-Livias/publication/358781143_Mind_Stress_Analysis_of_Students_using_Classification_Techniques/links/6214f9d46c472329dcfe1241/Mind-Stress-Analysis-of-Students-using-Classification-Techniques.pdf

Putra, I. E. D., Rusdinal, R., Ananda, A., & Gistituati, N. (2023). Perbandingan Kurikulum Pendidikan Indonesia dan Finlandia. Journal on Education, 06(01), 7437–7448. https://journal.uinsi.ac.id/index.php/bjie/article/download/7346/2511/

Putra, P. H., Azanuddin, A., Purba, B., & Dalimunthe, Y. A. (2023). Random forest and decision tree algorithms for car price prediction. Jurnal Matematika Dan Ilmu Pengetahuan Alam LLDikti Wilayah 1 (JUMPA), 4(1), 81–89. https://doi.org/10.54076/jumpa.v3i2.305

R., A., & F., L. M. (2023). Stress Among Secondary School Students: Exploring Stress Causes and Stress Measurement Instruments. Online Journal for TVET Practitioners, 8(2), 69–79. https://doi.org/10.30880/ojtp.2023.08.02.007

Rahmadhani, S. A., Asih, M. S., & Wulan, N. (2020). Implementasi Algoritma Decision Tree C.45 Pada Klasifikasi Penyakit Tuberkulosis. Seminar Nasional Teknologi Informasi & Komunikasi, 230–238.

Yoga Religia, Agung Nugroho, & Wahyu Hadikristanto. (2021). Klasifikasi Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 187–192. https://doi.org/10.29207/resti.v5i1.2813

Downloads

Published

02-04-2025

Issue

Section

Articles

How to Cite

Optimization of Stress Classification Among Students Using Random Forest Algorithm. (2025). SITEKNIK: Sistem Informasi, Teknik Dan Teknologi Terapan, 2(2), 76-87. https://doi.org/10.5281/zenodo.15130385

Share

Similar Articles

You may also start an advanced similarity search for this article.