Optimization of Random Forest Algorithm Using Random Search for Alzheimer's Disease Detection

Authors

  • Hasyim Sri Wahyudi Universitas Amikom Yogyakarta, Indonesia Author
  • Ferian Fauzi Abdulloh Universitas Amikom Yogyakarta, Indonesia Author

DOI:

https://doi.org/10.5281/zenodo.16554889

Keywords:

Alzheimers, Random Forest, Optimization, Random Search, Machine Learning

Abstract

Alzheimer's disease is a type of neurodegenerative disorder that causes a decline in cognitive function. Early detection is crucial to enable more effective interventions and slow the progression of the disease. However, the diagnosis of Alzheimer's disease often faces challenges, particularly in detecting the early stages of the disease from complex and diverse medical data. This study aims to optimize the Random Forest algorithm using the Random Search method for detecting Alzheimer's disease. The Random Forest algorithm was applied as the primary model in this research, while hyperparameter optimization was performed using the Random Search method to improve model performance. The results showed that the Random Forest model without optimization achieved an accuracy of 96%. After performing hyperparameter optimization, the model's accuracy increased to 97%. In conclusion, the application of hyperparameter optimization using the Random Search method successfully enhanced the performance of the Random Forest model. The resulting model provides more accurate predictions, making it a reliable tool for the early detection of Alzheimer's disease.

Downloads

Download data is not yet available.

References

World Health Organization. (2023, March 15). Dementia. Retrieved from https://www.who.int/news-room/fact-sheets/detail/dementia

Dana, A. R., Kristananda, R. V., Wibowo, M. B. S., & Prasetya, D. A. (2024, September). Perbandingan Algoritma Decision Tree dan Random Forest dengan Hyperparameter Tuning dalam Mendeteksi Penyakit Stroke. In Prosiding Seminar Nasional Informatika Bela Negara (Vol. 4, pp. 66-75).

Klyucherev, T. O., Olszewski, P., Shalimova, A. A., Chubarev, V. N., Tarasov, V. V., Attwood, M. M., ... & Schiöth, H. B. (2022). Advances in the development of new biomarkers for Alzheimer’s disease. Translational neurodegeneration, 11(1), 25.

van Oostveen, W. M., & de Lange, E. C. (2021). Imaging techniques in Alzheimer’s disease: a review of applications in early diagnosis and longitudinal monitoring. International journal of molecular sciences, 22(4), 2110.

Song, M., Jung, H., Lee, S., Kim, D., & Ahn, M. (2021). Diagnostic classification and biomarker identification of Alzheimer’s disease with random forest algorithm. Brain sciences, 11(4), 453.

Ismail, W. N., PP, F. R., & Ali, M. A. (2023). A meta-heuristic multi-objective optimization method for Alzheimer’s disease detection based on multi-modal data. Mathematics, 11(4), 957.

Elgeldawi, E., Sayed, A., Galal, A. R., & Zaki, A. M. (2021, November). Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis. In Informatics (Vol. 8, No. 4, p. 79). MDPI.

Widyantoro, W., & Atlantika, A. P. (2021). Hubungan antara demensia dengan activity of daily living (ADL) pada lanjut usia. Indonesian Journal for Health Sciences, 5(2), 77-85.

Pramudhyta, N. A., & Rohman, M. S. (2024). Perbandingan Optimasi Metode Grid Search dan Random Search dalam Algoritma XGBoost untuk Klasifikasi Stunting. J. MEDIA Inform. BUDIDARMA, 8(1), 19.

Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Meskhi, B., Razveeva, I., & Beskopylny, N. (2022). Concrete strength prediction using machine learning methods CatBoost, k-nearest neighbors, support vector regression. Applied Sciences, 12(21), 10864.

Aprilliandhika, W., & Abdulloh, F. F. (2024). Comparison Of K-Nearest Neighbor And Support Vector Machine Algorithm Optimization With Grid Search CV On Stroke Prediction. Jurnal Teknik Informatika (Jutif), 5(4), 991-1000.

Kurniawan, I., Hananto, A. L., Hilabi, S. S., Hananto, A., Priyatna, B., & Rahman, A. Y. (2023). Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 10(1), 731-740.

Downloads

Published

07-07-2025

Issue

Section

Articles

How to Cite

Optimization of Random Forest Algorithm Using Random Search for Alzheimer’s Disease Detection. (2025). SITEKNIK: Sistem Informasi, Teknik Dan Teknologi Terapan, 2(3), 231-239. https://doi.org/10.5281/zenodo.16554889

Share

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.