Comparison Of Efficientnet And Yolov8 Algorithms In Motor Vehicle Classification

Authors

  • Ferian Fauzi Abdulloh Universitas Amikom Yogyakarta, Indonesia Author
  • Favian Afrheza Fattah Universitas Amikom Yogyakarta, Indonesia Author
  • Devi Wulandari Universitas Amikom Yogyakarta, Indonesia Author
  • Ali Mustopa Universitas Amikom Yogyakarta, Indonesia Author

DOI:

https://doi.org/10.5281/zenodo.16561038

Keywords:

Vehicles, classification, EfficientNet, YOLOv8, accuracy, precision, recall, F1-score

Abstract

The YOLOv8 accuracy curve highlights clear overfitting. As shown in the graph, the model reaches 100% training accuracy from the first epoch and remains flat, indicating it memorized the training data. However, validation accuracy lags behind, fluctuating between 90% and 92% without significant improvement. This discrepancy between training and validation performance suggests that YOLOv8 struggles to generalize to unseen data. The issue likely stems from its architecture, which is optimized for object detection tasks that prioritize object localization over feature extraction for classification. When repurposed for classification, YOLOv8 may not extract the nuanced visual patterns needed to differentiate similar classes, such as trucks and buses. Consequently, although YOLOv8 performs well on the training set, its classification accuracy in real-world scenarios is limited. Addressing this may require architectural adjustments, stronger regularization, or more diverse training data to enhance the model’s generalization for pure classification tasks.

Downloads

Download data is not yet available.

References

Dwiyanto, R., Widodo, D. W., & Kasih, P. (2022). Implementasi Metode You Only Look Once (YOLOv5) Untuk Klasifikasi Kendaraan Pada CCTV Kabupaten Tulungagung. arXiv preprint.

Humaeroh, E. (2023). Islamic Religious Education Learning and Trends in the Use of Artificial Intelligence. Asian Journal of Islamic Studies.

Mahdi, I., Muchtar, K., Arnia, F., & Ernita, T. (2022). Substraksi Latar Menggunakan Nilai Mean Untuk Klasifikasi Kendaraan Bergerak Berbasis Deep Learning. Jurnal Rekayasa Elektrika, 18(2).

Mauludy, M. W., Rulyana, D., & Hardjianto, M. (2024). Deteksi Jamur Beracun dengan Algoritma Convolutional Neural Network dan Arsitektur EfficientNet-B0. Jurnal Media Informatika Budidarma.

Nur, M., et al. (2023). Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Menggunakan YOLO V8. Conference on AI and Health Technology.

Hoang, V.-T., & Jo, H. (2021). Practical Analysis on Architecture of EfficientNet. International Journal of Advanced Computer Science and Applications.

Yanto, F. A., & Irmawati, I. (2023). YOLO-V8 Peningkatan Algoritma untuk Deteksi Pemakaian Masker Wajah. Jurnal Mahasiswa Teknik Informatika.

Zhang, Y., et al. (2022). Comparative Analysis of CNN Architectures for Vehicle Classification. Applied Sciences, 12(18).

Alzubaidi, L., et al. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53.

Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class imbalance problem in CNNs. Neural Networks, 106, 249-259.

Chollet, F. (2016). Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Deng, J., et al. (2009). ImageNet: A large-scale hierarchical image database. CVPR.

Dwiyanto, R., Widodo, D. W., & Kasih, P. (2022). Implementasi Metode You Only Look Once (YOLOv5) Untuk Klasifikasi Kendaraan Pada CCTV Kabupaten Tulungagung.

Hoang, V.-T., & Jo, H. (2021). Practical Analysis on Architecture of EfficientNet. International Journal of Advanced Computer Science and Applications.

Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems.

Liu, W., et al. (2020). Deep learning for generic object detection: A survey. International Journal of Computer Vision, 128(2), 261–318.

Mahdi, I., Muchtar, K., Arnia, F., & Ernita, T. (2022). Substraksi Latar Menggunakan Nilai Mean Untuk Klasifikasi Kendaraan Bergerak Berbasis Deep Learning. Jurnal Rekayasa Elektrika, 18(2).

Mauludy, M. W., Rulyana, D., & Hardjianto, M. (2024). Deteksi Jamur Beracun dengan Algoritma CNN dan Arsitektur EfficientNet-B0. Jurnal Media Informatika Budidarma.

Prianto, C., & Harani, N. S. (2019). The data mining analysis to determine the priorities of families who receiving assistance. Journal of Physics: Conference Series.

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 60.

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning (ICML).

Wildan, M., et al. (2023). Optimization of Vehicle Image Classification using YOLOv8 and Custom CNN. Conference on Applied AI Systems.

Downloads

Published

29-07-2025

Issue

Section

Articles

How to Cite

Comparison Of Efficientnet And Yolov8 Algorithms In Motor Vehicle Classification. (2025). SITEKNIK: Sistem Informasi, Teknik Dan Teknologi Terapan, 2(3), 249-259. https://doi.org/10.5281/zenodo.16561038

Share

Similar Articles

You may also start an advanced similarity search for this article.