Performance Analysis of Support Vector Machine and Gradient Boosting Machine Algorithms for Heart Disease Prediction
DOI:
https://doi.org/10.5281/zenodo.15126239Keywords:
Heart disease, Support Vector Machine, Gradient Boosting Machine, Prediction, Machine LearningAbstract
Cardiovascular disease ranks among the primary causes of mortality globally, with death rates rising each year. Assessing heart disease risk is crucial for enhancing the efficiency of prevention and treatment strategies. This study seeks to evaluate the effectiveness of two machine learning techniques, namely Support Vector Machine and Gradient Boosting Machine, in forecasting heart disease using a dataset obtained from Kaggle. The research process starts with gathering data, followed by exploratory analysis, preprocessing through label encoding, handling class imbalance with SMOTE, and normalizing data using Standard Scaler. Features were selected using the Correlation Thresholding method. Subsequently, the dataset was divided into training and testing sets to develop predictive models. The model performance was assessed using evaluation metrics, including accuracy, precision, recall, and F1-Score. The findings indicate that the Gradient Boosting Machine outperformed the Support Vector Machine, achieving an accuracy of 98% compared to SVM's accuracy of 93%. This research is expected to contribute to healthcare practices by enabling early detection of heart disease risks. Future research is recommended to explore other algorithms or employ more diverse datasets to achieve better results
Downloads
References
Amelia, Reni. 2017. “Faktor-Faktor Yang Mempengaruhi Status Kesehatan.” Sosio Konsepsia 2(2): 137–52. doi:10.33007/ska.v2i2.772.
Corey Wade, Kevin Glynn. 2020. Gradient Boosting Machines. Germany: Packt Publishing Ltd.
Erdania, Erdania, M. Faizal, and Rima Berti Anggraini. 2023. “FAKTOR – FAKTOR YANG BERHUBUNGAN DENGAN KEJADIAN PENYAKIT JANTUNG KORONER (PJK) Di RSUD Dr. (H.C.) Ir. SOEKARNO PROVINSI BANGKA BELITUNG TAHUN 2022.” Jurnal Keperawatan 12(1): 17–25. doi:10.47560/kep.v12i1.472.
Huda, Irkham Abdaul. 2020. “Perkembangan Teknologi Informasi Dan Komunikasi (Tik).” Jurnal Pendidikan dan Konseling (JPDK) 2(1): 121–25. doi:10.31004/jpdk.v1i2.622.
Ingo Steinwart, Andreas Christmann. 2008. Support Vertor Machines. Germany: Springer International Publishing.
Munawar, Zen. 2021. “Manfaat Teknologi Informasi Di Masa Pandemi Covid-19.” Jurnal Sistem Informasi 03(02): 9. https://ejournal.unibba.ac.id/index.php/j-sika/article/view/692.
Parikesit Dito; Putranto Arli Aditya; Anurogo, Riza Arief. 2018. “Kontribusi Aplikasi Medis Dari Perkembangan Pembelajaran Mesin (Machine Learning) Terbaru.” Cermin Dunia Kedokteran 45(9): 700–703. http://www.kalbemed.com/DesktopModules/EasyDNNNews/DocumentDownload.ashx?portalid=0&moduleid=471&articleid=225&documentid=65.
Yudi Her Oktaviono. 2024. PENYAKIT JANTUNG. Jawa Timur: Airlangga University Press.
Zhang, Xian-Da. 2001. “Support Vector Machines ( SVM ) Support Vector Machines ( SVM ).” Gesture 23(6): 349–61.
Amelia, Reni. 2017. “Faktor-Faktor Yang Mempengaruhi Status Kesehatan.” Sosio Konsepsia 2(2): 137–52. doi:10.33007/ska.v2i2.772.
Corey Wade, Kevin Glynn. 2020. Gradient Boosting Machines. Germany: Packt Publishing Ltd.
Erdania, Erdania, M. Faizal, and Rima Berti Anggraini. 2023. “FAKTOR – FAKTOR YANG BERHUBUNGAN DENGAN KEJADIAN PENYAKIT JANTUNG KORONER (PJK) Di RSUD Dr. (H.C.) Ir. SOEKARNO PROVINSI BANGKA BELITUNG TAHUN 2022.” Jurnal Keperawatan 12(1): 17–25. doi:10.47560/kep.v12i1.472.
Huda, Irkham Abdaul. 2020. “Perkembangan Teknologi Informasi Dan Komunikasi (Tik).” Jurnal Pendidikan dan Konseling (JPDK) 2(1): 121–25. doi:10.31004/jpdk.v1i2.622.
Ingo Steinwart, Andreas Christmann. 2008. Support Vertor Machines. Germany: Springer International Publishing.
Munawar, Zen. 2021. “Manfaat Teknologi Informasi Di Masa Pandemi Covid-19.” Jurnal Sistem Informasi 03(02): 9. https://ejournal.unibba.ac.id/index.php/j-sika/article/view/692.
Parikesit Dito; Putranto Arli Aditya; Anurogo, Riza Arief. 2018. “Kontribusi Aplikasi Medis Dari Perkembangan Pembelajaran Mesin (Machine Learning) Terbaru.” Cermin Dunia Kedokteran 45(9): 700–703. http://www.kalbemed.com/DesktopModules/EasyDNNNews/DocumentDownload.ashx?portalid=0&moduleid=471&articleid=225&documentid=65.
Yudi Her Oktaviono. 2024. PENYAKIT JANTUNG. Jawa Timur: Airlangga University Press.
Zhang, Xian-Da. 2001. “Support Vector Machines ( SVM ) Support Vector Machines ( SVM ).” Gesture 23(6): 349–61.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Tegar Wirawan, Kusnawi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Share
Most read articles by the same author(s)
- RIYAN BAYU SATRIYA, Kusnawi Kusnawi, Random Search Optimization Using Random Forest Algorithm For Liver Disease Prediction , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 3 (2025): July
Similar Articles
- Mega Fitri Yani, Cindy Muhdiantini, Syifa Nur Aini, Risk Management in Financial Technology: A Systematic Literature Reviewto Support Sustainability and Security of Digital Financial Services , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 1 (2025): January
You may also start an advanced similarity search for this article.








