COMPARISON ANALYSIS OF RANDOM FOREST AND NAÏVE BAYES ALGORITHMS FORRAINFALL CLASSIFICATION BASED ON CLIMATE IN INDONESIA

Authors

  • Nicolaus Advendea Prakoso Indaryono Telkom University, Indonesia Author
  • RD. Rohmat Saedudin Telkom University, Indonesia Author
  • Faqih Hamami Telkom University, Indonesia Author

DOI:

https://doi.org/10.5281/zenodo.14715081

Keywords:

Classification, Data mining, Rainfall, Naïve Bayes, Random forest

Abstract

Indonesia predominantly features a tropical climate across its entirety. With this mostly tropical climate, the country encounters minimal shifts in temperature but exhibits a wide array of rainfall variations. Rainfall patterns in Indonesia showcase significant diversity. These variations in rainfall hold substantial importance in mitigating risks linked to heavy rainfall, such as floods and landslides. Moreover, besides its role in disaster preparedness, rainfall data also holds practical value in sectors such as agriculture, transportation, and industry. By incorporating data mining classification techniques, the process of predicting rainfall in Indonesia can be greatly enhanced. In this study, daily climate data from Indonesia is harnessed, and the chosen method for classification is the random forest algorithm. This selection stems from its capability to generate accurate and consistent classification models without necessitating intricate adjustments of parameters. Furthermore, the Naïve Bayes method is also integrated due to its straightforward implementation and its capacity for simple probability modeling, which can be effectively applied across diverse classification data. The outcomes of this investigation suggest that the random forest algorithm surpasses the Naïve Bayes algorithm in terms of performance and accuracy when classifying climate datasets unique to Indonesia. The random forest algorithm attains an accuracy rate of 86.55%, whereas the Naïve Bayes algorithm lags at an accuracy rate of 36.61%. It is anticipated that these research findings can serve as a point of reference for subsequent scholarly inquiries and contribute to the ongoing monitoring of daily rainfall in Indonesia, thereby aiding in the prevention of natural disasters.

Downloads

Download data is not yet available.

References

Mz, M. A., Hamdhana, R. A., Nyndia, Z., Wahyudi, F., Fahmi, M. H., & Ratnasari, N. (2022).

Seminar PMII Movement In Tech Generasi Baru Internet Of Things. 2(3), 1–9.

Purnomo, M., Maulina, E., Wicaksono, A. R., & Rizal, M. (2021). Adopsi Teknologi Internet of

Things pada Startup

Industri F&B. Techno.Com, 20(3), 342–351.

https://doi.org/10.33633/tc.v20i3.4824

M. M. Rojas-Downing, A. P. Nejadhashemi, T. Harrigan, dan S. A. Woznicki, "Climate change

and livestock: Impacts, adaptation, and mitigation," Climate Risk Management, vol. 16,

pp. 145-163, 2017.

Seah, C. S., Kasim, S., Fudzee, M. F., Mohamad, M. S., Saedudin, R. R., Hassan, R., ... & Atan,

R. (2018). An effective pre-processing phase for gene expression classification. Indonesian

Journal of Electrical Engineering and Computer Science, 11(3), 1223.

R. Roqyah, Y. Ruhiat, dan A. Saefullah, "Analisis Klasifikasi Tipe Iklim Dari Data Curah Hujan

Menggunakan Metode Schmidt-Ferguson (Studi Kasus: Kabupaten Tangerang)," Jurnal

Teori dan Aplikasi Fisika, vol. 11, no. 1, pp. 29-38, 2023.

D. Setiawan, "Analisis Curah Hujan di Indonesia untuk Memetakan Daerah Potensi Banjir dan

Tanah Longsor dengan Metode Cluster Fuzzy C-Means dan Singular Value Decompotition

(SVD)," JURNAL EMACS (Engineering, MAthematics, and Computer Science), vol. 3,

no. 3, pp. 115-120, 2021.

J. Jackson, "Data mining; A Conceptual Overview,"Communications of the Association for Information

Systems,

vol. 8,

art. 19, p.

267,

2002.

D. T. Larose, "Discovering knowledge in data: An Introduction to Data mining," A JOHN

WILEY & SONS, INC., n.d.

D. Jollyta, W. Ramadhan, dan M. Zarlis, "Konsep Data mining dan Penerapan," Deepublish,

2020.

A. I. Kusumarini, P. A. Hogantara, M. Fadhlurohman, dan N. Chamidah, "Perbandingan

Algoritma Random forest, Naïve Bayes, Dan Decision Tree Dengan Oversampling Untuk

Klasifikasi Bakteri E. Coli," Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya

(SENAMIKA), vol. 2, no. 1, pp. 792-799, 2021.

Darmawan, M. F., Jamahir, N. I., Saedudin, R. R., & Kasim, S. (2018). Comparison between

ANN and multiple linear regression models for prediction of warranty cost. International

Journal of Integrated Engineering, 10(6).

Sikumbang, E. D. (2018). "Penerapan Data Mining Penjualan Sepatu Menggunakan Metode

Algorit-ma Apriori." Jurnal Teknik Komputer,4(1), 156-161. [Online]. Available:

https://doi.org/10.31294/jtk.v4i1.2560

J. Han, M. Kamber, dan J. Pei, "Data mining: Concepts and Techniques," 3rd ed., Elsevier

Science, 2012.

J. Ali, R. Khan, N. Ahmad, dan I. Maqsood, "Random forests and Decision Trees," International

Journal of Computer Science Issues, vol. 9, no. 5, pp. 272-278, 2012.

A. Triawan dan D. L. Melinda, "Penerapan Metode Naïve bayes Untuk Rekomendasi Topik

Tugas Akhir Berdasarkan Daftar Hasil Studi Mahasiswa di Perguruan Tinggi," Teknois:

Jurnal Ilmiah Teknologi Informasi dan Sains, vol. 10, no. 2, pp. 58-70.

Jacob, D. W., Fudzee, M. F. M., Salamat, M. A., Saedudin, R. R., Yanto, I. T. R., & Herawan, T.

(2017). An application of rough set theory for clustering performance expectancy of

Indonesian e-government dataset. In Recent Advances on Soft Computing and Data

Mining: The Second Interna-tional Conference on Soft Computing and Data Mining

(SCDM-2016), Bandung, Indonesia, August 18-20, 2016, Proceedings Second (pp. 638646).

Springer

International

Publishing.

G. A. Sandag, "Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,"

Cogito Smart Journal, vol. 6, no. 2, pp.167-178.

Yanto, I. T. R., Saedudin, R. R., Lashari, S. A., & Haviluddin. (2018). A numerical classification

tech-nique based on fuzzy soft set using hamming distance. In Recent Advances on Soft

Computing and Data Mining: Proceedings of the Third International Conference on Soft

Computing and Data Mining (SCDM 2018), Johor, Malaysia, February 06-07, 2018 (pp.

252-260). Springer International Publish-ing.

Safitra, M. F., & Abdurrahman, L. (2023). Open-up International Market Opportunities: Using

the OSINT Crawling and Analyzing Method. SEIKO: Journal of Management & Business,

6(1), 923-931.

Seah, C. S., Kasim, S., Fudzee, M. F. M., Ping, J. M. L. T., Mohamad, M. S., Saedudin, R. R., &

Ismail, M. A. (2017). An enhanced topologically significant directed random walk-in cancer classification us-ing gene expression datasets. Saudi journal of biological sciences,

24(8), 1828-1841.

19. Safitra, M. F., Lubis, M., & Widjajarto, A. (2023, March). Security Vulnerability Analysis

using Pene-tration Testing Execution Standard (PTES): Case Study of Government's

Website. In Proceedings of the 2023 6th International Conference on Electronics,

Communications and Control Engineering (pp. 139-145).

Sutoyo, E., Yanto, I. T. R., Saedudin, R. R., & Herawan, T. (2017). A soft set-based co-occurrence

for clustering web user transactions. TELKOMNIKA (Telecommunication Computing

Electronics and Control), 15(3), 1344-1353.

Safitra, M. F., Lubis, M., & Kurniawan, M. T. (2023, March). Cyber Resilience: Research

Opportuni-ties. In Proceedings of the 2023 6th International Conference on Electronics,

Communications and Control Engineering (pp. 99-104).

Jacob, D. W., Fudzee, M. F. M., Salamat, M. A., Saedudin, R., Abdullah, Z., & Herawan, T.

(2017). Mining significant association rules from on information and system quality of

indonesian e-government dataset. In Recent Advances on Soft Computing and Data

Mining: The Second Interna-tional Conference on Soft Computing and Data Mining

(SCDM-2016), Bandung, Indonesia, August 18-20, 2016, Proceedings Second (pp. 608618).

Springer

International

Publishing.

Safitra, M. F., Lubis, M., & Fakhrurroja, H. (2023). Counterattacking Cyber Threats: A

Framework for the Future of Cybersecurity. Sustainability, 15(18), 13369.

Zunaidi, W. H. A. W., Saedudin, R. R., Shah, Z. A., Kasim, S., Seah, C. S., & Abdurohman, M.

(2018). Performances analysis of heart disease dataset using different data mining

classifications. Interna-tional Journal on Advanced Science, Engineering, and Information

Technology, 8(6), 2677-2682.

Maulana, F., Fajri, H., Safitra, M. F., & Lubis, M. (2023, August). Unmasking log4j’s

Vulnerability: Protecting Systems against Exploitation through Ethical Hacking and

Cyberlaw Perspectives. In 2023 9th International Conference on Computer and

Communication Engineering (ICCCE) (pp. 311-316). IEEE.

Saedudin, R. R., Sutoyo, E., Kasim, S., Mahdin, H., & Yanto, I. T. R. (2017, October). Attribute

selec-tion on student performance dataset using maximum dependency attribute. In 2017

5th Internation-al Conference on Electrical, Electronics and Information Engineering

(ICEEIE) (pp. 176-179). IEEE.

Downloads

Published

05-02-2025

Issue

Section

Articles

How to Cite

COMPARISON ANALYSIS OF RANDOM FOREST AND NAÏVE BAYES ALGORITHMS FORRAINFALL CLASSIFICATION BASED ON CLIMATE IN INDONESIA. (2025). SITEKNIK: Sistem Informasi, Teknik Dan Teknologi Terapan, 1(2), 102-109. https://doi.org/10.5281/zenodo.14715081

Share