Chili Leaf Disease Classification Using Transfer Learning with VGG16 and MobileNetV2 Combined with Random Search Hyperparameter Tuning
DOI:
https://doi.org/10.5281/zenodo.17383224Keywords:
Chili Plant, Machine Learning, CNN, Transfer Learning, MobileNet V2, VGG16, Random SearchAbstract
Chili is one of the main food commodities in Indonesia with considerable economic value. Frequent climate changes have made chili plants more vulnerable to pest and disease attacks. Early identification of these diseases is crucial, as delays can lead to crop failure. However, this process presents its own challenges, as it requires specific expertise and considerable time. This study employs the transfer learning method using the VGG16 and MobileNetV2 architectures to build a model capable of classifying diseases in chili plants based on leaf images, along with the use of Random Search hyperparameter tuning to improve model accuracy. The results show that the use of transfer learning for disease classification achieved high accuracy, with MobileNetV2 reaching an accuracy score of 88% without tuning. Meanwhile, the application of Random Search hyperparameter tuning proved effective in improving model accuracy, particularly with the VGG16 architecture, which saw a significant accuracy increase from 51% to 89%. It can be concluded that the transfer learning method is well-suited for identifying diseases in chili plants based on leaf images with high accuracy, and that the application of Random Search hyperparameter tuning successfully enhanced the model’s performance.
Downloads
References
Anafiotika, R., Suparman, S., Fauziah, Z., Meira Zhafirah, A., Margareta, G., Dwi Rani, F., Wardani, A., Tegar Yusniawan, M., Studi Proteksi Tanaman Jurusan Hama dan Penyakit Tumbuhan, P., & Pertanian, F. (2023). Intensitas Serangan Hama Dan Penyakit Cabai Rawit Di Provinsi Sumatera Selatan. Seminar Nasional Pertanian Pesisir, 2(1), 535–547.
Asir, M., Wahab, A., Yani, N. F., Arum, R. A., & Ramlah, R. (2023). Strategi peningkatan penjualan produk pertanian cabai di Kabupaten Sinjai. JPPI (Jurnal Penelitian Pendidikan Indonesia), 9(2), 725. https://doi.org/10.29210/020231803
Badan Pangan Nasional. (2024). Badan Pangan Nasional - Home. https://badanpangan.go.id/
Emmanuel, T. O. (2018). PlantVillage Dataset. Kaggle. https://www.kaggle.com/datasets/emmarex/plantdisease
Hasanah, L. (2022). Analisis Faktor-Faktor Pengaruh Terjadinya Impor Beras di Indonesia Setelah Swasembada Pangan. Growth: Jurnal Ilmiah Ekonomi Pembangunan, 1(2), 57–72. https://e-journal.unimaju.ac.id/index.php/GJIEP/article/view/6
Hubballi, M. (2023). chilli_leaf_dataset. Kaggle. https://www.kaggle.com.datasets/mahaninghubballi/chilli-leaf-dataset
Iswantoro, D., & Handayani UN, D. (2022). Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Ilmiah Universitas Batanghari Jambi, 22(2), 900. https://doi.org/10.33087/jiubj.v22i2.2065
Manalu, S. (2024). Dampak Perubahan Iklim Terhadap Produksi Pertanian di Indonesia. Literacy Notes, 2. https://liternot.com/index.php/ln/article/view/169
Marianah, L. (2020). Serangga Vektor dan Intensitas Penyakit Virus pada Tanaman Cabai Merah. AgriHumanis: Journal of Agriculture and Human Resource Development Studies, 1(2), 127–134. https://doi.org/10.46575/agrihumanis.v1i2.70
Muna Ramadhani, A. N., Saraswati, G. W., Agung, R. T., & Santoso, H. A. (2023). Performance Comparison of Convolutional Neural Network and MobileNetV2 for Chili Diseases Classification. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(4), 940–946. https://doi.org/10.29207/resti.v7i4.5028
Naura, A. (2018). Dampak Perubahan Iklim Terhadap Produksi dan Pendapatan Usaha Tani Cabai Merah (Kasus Dusun Sumberbendo, Desa Kucur, Kabupaten Malang. 2. https://doi.org/10.21776/ub.jepa.2018.002.02.8
Saputra, I., & Krisyanti, D. A. (2022). Machine Learning Untuk Pemula. Informatika Bandung.
Setyadi, R. A., Rahman, S., Manurung, D., Hasanah, M., & Indrawati, A. (2024). Implementasi Transfer Learning Untuk Klasifikasi Penyakit Pada Daun Cabai Menggunakan Cnn. Djtechno: Jurnal Teknologi Informasi, 5(2), 304–315. https://doi.org/10.46576/djtechno.v5i2.4642
Suyanto. (2022). Machine Learning: Tingkat Dasar dan Lanjut Edisi - 2 (2nd ed.). Informatika Bandung.
Vo, H. T., Ngoc, H. T., & Quach, L. Da. (2023). An Approach to Hyperparameter Tuning in Transfer Learning for Driver Drowsiness Detection Based on Bayesian Optimization and Random Search. International Journal of Advanced Computer Science and Applications, 14(4), 828–837. https://doi.org/10.14569/IJACSA.2023.0140492
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Aryawijaya, Kusnawi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Share
Most read articles by the same author(s)
- Raffa Nur Listiawan Dhito Eka Santoso, Kusnawi, Optimization of Stress Classification Among Students Using Random Forest Algorithm , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 2 (2025): April
- Karisma Septa Kresna, Kusnawi, Performance Analysis of SVM and Random Forest Algorithms in the Case of the Influence of Music on Mental Health , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 2 (2025): April
- Muhammad Irvan Shandika, Kusnawi, S.Kom, M.Eng, AI Web-based Computer Service Management System at PUSCOM , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 3 (2025): July
- Tegar Wirawan, Kusnawi, Performance Analysis of Support Vector Machine and Gradient Boosting Machine Algorithms for Heart Disease Prediction , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 2 (2025): April
- RIYAN BAYU SATRIYA, Kusnawi Kusnawi, Random Search Optimization Using Random Forest Algorithm For Liver Disease Prediction , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 3 (2025): July
- Christa Putri Rahayu, Kusnawi, Water Quality Analysis and Consumption Feasibility Using Support Vector Machine and CatBoosting with Hyperparameter Tuning , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 4 (2025): October
Similar Articles
- Annisa Humairo, Akbar Habib Buana Wibawa Putra, Laily Indaryani, Muharman Lubis, Strategi Terbaik Transfer Pengetahuan dalam K3: Integrasi Teknologi dan Manajemen Pengetahuan , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 3 (2025): July
- Meky Taba Orlando MT, Hery Sudaryanto, Iqbal Ahmad Dahlan, Aam Muharam, Performance Study of 13.56 Mhz Full-Bridge Inverter on Wireless Power Transfer System for Electric Vehicle Charging , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 4 (2025): October
- Mercy Kristina Possumah, Yulio Ferdinand, Neca Aqila, Muharman Lubis, Peran Manajemen Pengetahuan dalam Pengembangan Kompetisi dan Kinerja Pegawai di Perguruan Tinggi : Pendekatan Study Literature Review , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 3 (2025): July
- Daffa Shidqi Thamrin, Business Model for Effectiveness of Human-AI Collaboration Patterns in Digital Fiction Storytelling: A Systematic Literature Review , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 3 (2025): July
- Farhana Zahra, Dzakiyyah Al Kaazhim, Putri Luthfiah Harmaya, Muharman Lubis, Organizational Impact of Knowledge Management on Innovation Intellectual Capital Research and Creativity: A Systematic Literature Review , SITEKNIK: Sistem Informasi, Teknik dan Teknologi Terapan: Vol. 2 No. 3 (2025): July
You may also start an advanced similarity search for this article.








