PERAN PROSES BISNIS DALAM TRANSFORMASI DIGITAL UKM: SYSTEMATIC LITERATURE REVIEW MENGENAI TEKNOLOGI YANG DIADOPSI

Authors

  • Shobrun Jamil Bagastio Telkom University, Indonesia Author
  • M.Ahyar Harizillah Telkom University, Indonesia Author
  • Muhammad Arya Pramudya Subekti Author

DOI:

https://doi.org/10.5281/zenodo.14714928

Keywords:

Bisnis Proses, Transformasi Digital, UKM

Abstract

Penelitian ini mengeksplorasi peran proses bisnis dalam transformasi digital dan fokus pada teknologi yang diadopsi dalam konteks ini. Hal ini menekankan pentingnya proses bisnis dalam memperbarui strategi operasional, meningkatkan efisiensi, dan mendorong inovasi. Studi ini menggunakan pendekatan PRISMA untuk mengumpulkan dan mengevaluasi literatur yang relevan tentang deteksi dan mitigasi ulasan palsu. Pendekatan PRISMA dipilih karena memberikan kerangka kerja sistematis dalam pencarian, seleksi, dan evaluasi literatur, memastikan keberlanjutan dan ketelitian dalam pengumpulan data. Temuan menyoroti distribusi geografis dari karya-karya yang ditinjau, dengan India mendominasi literatur tentang peran proses bisnis dalam transformasi digital. Analisis juga mengungkapkan teknologi yang paling banyak dibahas dalam literatur, termasuk IoT, Cloud Computing dan Big Data. Penelitian ini menyimpulkan dengan menekankan perlunya eksplorasi lebih lanjut dan aplikasi praktis dari temuan penelitian ini dalam skenario dunia nyata.

 

Downloads

Download data is not yet available.

References

Alghazzawi, D. M., Alquraishee, A. G. A., Badri, S. K., & Hasan, S. H. (2023). ERFXGB:

Ensemble

Random

Forest-Based

XG

Boost

for

Accurate

Prediction

and

Classification of E-Commerce Product Review. Sustainability (Switzerland), 15(9).

https://doi.org/10.3390/su15097076

Alsubari, S. N., Deshmukh, S. N., Alqarni, A. A., Alsharif, N., Aldhyani, T. H. H.,

Alsaade, F. W., & Khalaf, O. I. (2022). Data analytics for the identification of fake reviews

using supervised learning. Computers, Materials and Continua, 70(2), 3189–3204.

https://doi.org/10.32604/cmc.2022.019625

Alzahrani, M. E., Aldhyani, T. H. H., Alsubari, S. N., Althobaiti, M. M., & Fahad, A.

(2022). Developing an Intelligent System with Deep Learning Algorithms for Sentiment

Analysis of E-Commerce Product Reviews. In Computational Intelligence and

Neuroscience (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/3840071

Asaad, W. H., Allami, R., & Ali, Y. H. (2023). Fake Review Detection Using Machine

Learning. Revue d’Intelligence Artificielle, 37(5). https://doi.org/10.18280/ria.370507

dos Santos, A. S., Camargo, L. F. R., & Lacerda, D. P. (2020). Evaluation of classification

techniques for identifying fake reviews about products and services on the internet. In

Gestao e Producao (Vol. 27, Issue 4). Brazilian Institute for Information in Science and

Technology. https://doi.org/10.1590/0104-530X4672-20

Gopi, A. P., Jyothi, R. N. S., Narayana, V. L., & Sandeep, K. S. (2023). Classification of

tweets data based on polarity using improved RBF kernel of SVM. International Journal of

Information Technology (Singapore), 15(2), 965–980. https://doi.org/10.1007/s41870019-00409-4

Hadi, Z., Utami, E., & Ariatmanto, D. (2023). Detect Fake Reviews Using Random Forest

and Support Vector Machine. SinkrOn, 8(2), 623–630.

https://doi.org/10.33395/sinkron.v8i2.12090

Harli, I. I., Mutasowifin, A., Andrianto, M. S., & Syaefudin Andrianto, M. (2021).

Pengaruh Online Consumer Review dan Rating terhadap Minat Beli Produk Kesehatan

pada E-Marketplace Shopee Selama Masa Pandemi COVID-19. INOBIS: Jurnal Inovasi

Bisnis Dan Manajemen Indonesia, 04(04).

Hossain, M. R., Akhter, F., & Sultana, M. M. (2022). SMEs in Covid-19 Crisis and

Combating Strategies: A Systematic Literature Review (SLR) and A Case from Emerging

Economy. Operations Research Perspectives, 9.

https://doi.org/10.1016/j.orp.2022.100222

Lawn, S., Oster, C., Riley, B., Smith, D., Baigent, M., & Rahamathulla, M. (2020). A

literature review and gap analysis of emerging technologies and new trends in gambling. In

International Journal of Environmental Research and Public Health (Vol. 17, Issue 3).

MDPI AG. https://doi.org/10.3390/ijerph17030744

Le, H., & Kim, B. (2020). DETECTION OF FAKE REVIEWS ON SOCIAL MEDIA

USING MACHINE LEARNING ALGORITHMS. Issues in Information Systems, 21(1),

185–194. https://doi.org/10.48009/1_iis_2020_185-194

Memon, J., Sami, M., Khan, R. A., & Uddin, M. (2020). Handwritten Optical Character

Recognition (OCR): A Comprehensive Systematic Literature Review (SLR). In IEEE

Access (Vol. 8, pp. 142642–142668). Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ACCESS.2020.3012542

Mulyana, S. (2021). Pengaruh Harga dan Ulasan Produk Terhadap Keputusan Pembelian

Produk Fashion Secara Online Pada Shopee di Pekanbaru. Jurnal Daya Saing, 7(2).

Munna, M. H., Rifat, M. R. I., & Badrudduza, A. S. M. (2020, December 19). Sentiment

Analysis and Product Review Classification in E-commerce Platform. ICCIT 2020 - 23rd

International Conference on Computer and Information Technology, Proceedings.

https://doi.org/10.1109/ICCIT51783.2020.9392710

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C.

D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J.,

Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E.,

McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline

for reporting systematic reviews. In The BMJ (Vol. 372). BMJ Publishing Group.

https://doi.org/10.1136/bmj.n71

Priambodo, B., Rahayu, S., Hazidar, A. H., Naf’An, E., Masril, M., Handriani, I.,

Pratama Putra, Z., Kudr Nseaf, A., Setiawan, D., & Jumaryadi, Y. (2019). Predicting

GDP of Indonesia Using K-Nearest Neighbour Regression. Journal of Physics: Conference

Series, 1339(1). https://doi.org/10.1088/1742-6596/1339/1/012040

Purnama, N. I., & Putri, L. P. (2021). Analisis Penggunaan E-Commerce Di Masa

Pandemi. Seminar Nasional Teknologi Edukasi Dan Humaniora, 1.

Putra, E., Tinggi, S., & Pasaman, I. E. (2020). PENGARUH PROMOSI MELALUI

SOSIAL MEDIA DAN REVIEW PRODUK PADA MARKETPLACE SHOPEE

TERHADAP KEPUTUSAN PEMBELIAN ( STUDI PADA MAHASISWA STIE

PASAMAN ) THE INFLUENCE OF PROMOTION THROUGH SOCIAL MEDIA

AND PRODUCT REVIEW ON THE MARKETPLACE SHOPEE ON PURCHASE

DECISIONS (STUDIES ON STIE PASAMAN STUDENTS). Jurnal Apresiasi Ekonomi,

8(3), 467–474.

Radiansyah, E. (2022). PENGARUH ULASAN PALSU PADA KONSUMEN:

TINJAUAN LITERATUR DAN ARAH PENELITIAN MASA DEPAN. KALIANDA

HALOK GAGAS, 5(1), 42–49. https://doi.org/10.52655/khg.v5i1.47

Ramaswamy, S., & DeClerck, N. (2018). Customer perception analysis using deep learning

and NLP. Procedia Computer Science, 140, 170–178.

https://doi.org/10.1016/j.procs.2018.10.326

Raza, A., Bilal, M., & Fahad Rauf, M. (2021). COMPARATIVE ANALYSIS OF

MACHINE LEARNING ALGORITHMS FOR FAKE REVIEW DETECTION.

International Journal of Computational Intelligence in Control Copyrights @Muk

Publications, 13(1). https://www.kaggle.com/general/243411

Rohman, A. N., Luviana Musyarofah, R., Utami, E., & Raharjo, S. (2020, October 27).

Natural Language Processing on Marketplace Product Review Sentiment Analysis. 2020

2nd International Conference on Cybernetics and Intelligent System, ICORIS 2020.

https://doi.org/10.1109/ICORIS50180.2020.9320827

Saputra, R., Istanto, H., Bachtiar, F. A., Ridok, A., & Korespondensi, P. (2022).

PENGARUH WORD AFFECT INTENSITIES TERHADAP DETEKSI ULASAN

PALSU. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 9(2), 427–434.

https://doi.org/10.25126/jtiik.202295652

Sari, P. P. (2017). FAKTOR YANG MEMPENGARUHI TINGKAT KEPERCAYAAN

MASYARAKAT TERHADAP E-COMMERCE FACTORS AFFECTING OF TRUST

COMMUNITY LEVEL ON E-COMMERCE. JURNAL KOMUNIKASI, MEDIA DAN

INFORMATIKA, 06(03).

Shafin, M. A., Hasan, M. M., Alam, M. R., Mithu, M. A., Nur, A. U., & Faruk, M. O.

(2020, December 19). Product Review Sentiment Analysis by Using NLP and Machine

Learning in Bangla Language. ICCIT 2020 - 23rd International Conference on Computer

and Information Technology, Proceedings.

https://doi.org/10.1109/ICCIT51783.2020.9392733

Shoja, B. M., & Tabrizi, N. (2019). Customer Reviews Analysis with Deep Neural

Networks for E-Commerce Recommender Systems. IEEE Access, 7, 119121–119130.

https://doi.org/10.1109/ACCESS.2019.2937518

Srividhya, V., & Megala, P. (2019). Scraping and Visualization of Product Data from Ecommerce

Websites.

International

Journal

of

Computer

Sciences

and

Engineering,

7(5),

1403–1407.

https://doi.org/10.26438/ijcse/v7i5.14031407

Triandini, E., Jayanatha, S., Indrawan, A., Putra, G. W., Iswara, B., Studi, P., Informasi,

S., Bali, S., Raya, J., & No, P. (n.d.). Metode Systematic Literature Review untuk

Identifikasi Platform dan Metode Pengembangan Sistem Informasi di Indonesia. In

Indonesian Journal of Information Systems (IJIS (Vol. 1, Issue 2).

https://www.google.com

Yarnold, J., Banihashemi, S., Lemckert, C., & Golizadeh, H. (2021). Building and

construction quality: systematic literature review, thematic and gap analysis. In

International Journal of Building Pathology and Adaptation. Emerald Group Holdings

Ltd. https://doi.org/10.1108/IJBPA-05-2021-0072

Zhao, H., Liu, Z., Yao, X., & Yang, Q. (2021). A machine learning-based sentiment

analysis of online product reviews with a novel term weighting and feature selection

approach. Information Processing and Management, 58(5).

https://doi.org/10.1016/j.ipm.2021.102656

Downloads

Published

05-02-2025

Issue

Section

Articles

How to Cite

PERAN PROSES BISNIS DALAM TRANSFORMASI DIGITAL UKM: SYSTEMATIC LITERATURE REVIEW MENGENAI TEKNOLOGI YANG DIADOPSI. (2025). SITEKNIK: Sistem Informasi, Teknik Dan Teknologi Terapan, 1(1), 32-40. https://doi.org/10.5281/zenodo.14714928

Share

Similar Articles

1-10 of 19

You may also start an advanced similarity search for this article.