A Systematic Literature Review on AI Architecture Frameworkfor Product Analysis & Recommendation System in Electronic Service

Authors

  • Irfan Fahmi Ahmadi Telkom University, Indonesia Author

DOI:

https://doi.org/10.5281/zenodo.18431166

Keywords:

AI Architecture Framework, Product Analysis, Recommendation System, Electronic Service, Scalability

Abstract

The rapid growth of electronic services has created significant opportunities for personalized product recommendations through artificial intelligence (AI) systems. However, existing recommendation algorithms face critical challenges, including scalability, cold-start issues, and performance degradation in big data environments. This research performs a systematic review of 73 studies published from 2022 until 2024 to examine AI architecture frameworks applied to product analysis and recommendation systems in electronic service. The review identifies dominant frameworks such as CNN, RNN/LSTM, TensorFlow, Spark, and emerging technologies like GNN, alongside distributed infrastructures such as Hadoop for large-scale data processing. Research methods observed include experiments, benchmarks, simulations, surveys, and case studies. Key findings emphasize performance and efficiency improvements, accuracy, and scalability concerns. Based on these insights, this paper proposes a multi-layered AI architecture framework integrating data ingestion, distributed storage, model development, MLOps orchestration, privacy-preserving learning, and adaptive feedback loops. The proposed framework addresses scalability and sustainability challenges while ensuring high-performance recommendation capabilities. This study contributes a comprehensive blueprint for organizations seeking to deploy robust, scalable, and privacy-aware AI systems in dynamic e-service environments.

Downloads

Download data is not yet available.

References

Al Husaeni, D. F., Haristiani, N., Wahyudin, W., & Rasim. (2024). Chatbot Artificial Intelligence as Educational Tools in Science and Engineering Education: A Literature Review and Bibliometric Mapping Analysis with Its Advantages and Disadvantages. ASEAN Journal of Science and Engineering, 4(1), 93–118. https://doi.org/10.17309/ajse.v4i1.67429

Alsalem, M. A., Alamoodi, A. H., Albahri, O. S., Albahri, A. S., Martínez, L., Yera, R., Duhaim, A. M., & Sharaf, I. M. (2024). Evaluation of trustworthy artificial intelligent healthcare applications using multi-criteria decision-making approach. Expert Systems with Applications, 246. https://doi.org/10.1016/j.eswa.2023.123066

AlZu’bi, S., Zraiqat, A. M., & Hendawi, S. (2022). Sustainable Development: A Semantics-aware Trends for Movies Recommendation System using Modern NLP. International Journal of Advances in Soft Computing and Its Applications, 14(3), 153–173. https://doi.org/10.15849/IJASCA.221128.11

Atchade-Adelomou, P., & Alonso-Linaje, G. (2022). Quantum-enhanced filter: QFilter. Soft Computing, 26(15), 7167–7174. https://doi.org/10.1007/s00500-022-07190-w

Bagunaid, W., Chilamkurti, N. K., & Veeraraghavan, P. (2022). AISAR: Artificial Intelligence-Based Student Assessment and Recommendation System for E-Learning in Big Data. Sustainability (Switzerland), 14(17). https://doi.org/10.3390/su141710551

Bawack, R. E., Wamba, S. F., Carillo, K. D. A., & Akter, S. (2022). Artificial intelligence in E-Commerce: a bibliometric study and literature review. Electronic Markets, 32(1), 297–338. https://doi.org/10.1007/s12525-022-00537-z

Bui, V., & Alaei, A. R. (2022). Virtual reality in training artificial intelligence-based systems: a case study of fall detection. Multimedia Tools and Applications, 81(22), 32625–32642. https://doi.org/10.1007/s11042-022-13080-y

Chen, Y. S., Cheng, K., Hsu, C., & Zhang, H. (2022). MiniDeep: A Standalone AI-Edge Platform with a Deep Learning-Based MINI-PC and AI-QSR System. Sensors, 22(16). https://doi.org/10.3390/s22165973

Chinnasamy, P. (2025). Transforming E-Commerce with Intelligent Recommendation Systems: A Review of Current Trends in Machine Learning and Deep Learning. International Journal of Computational and Experimental Science and Engineering, 11(2), 1645–1661. Prof.Dr. İskender AKKURT. https://doi.org/10.22399/ijcesen.1183

Ellouze, A., Kadri, N., Alaerjan, A. S., & Ksantini, M. (2024). Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human Physical Activities in Large and Distributed Manners: A Recommendation System. Computers, Materials and Continua, 79(1), 351–372. https://doi.org/10.32604/cmc.2024.048061

Enas M. Turki. (2025). Enhancing E-Commerce Recommendations Through Data-Driven Approaches: A Case Study of Amazon Product Reviews. Journal of Information Systems Engineering and Management, 10(8s), 269–279. https://doi.org/10.52783/jisem.v10i8s.1025

Fakhar, H., Lamrabet, M., Echantoufi, N., Khattabi, K. el, & Ajana, L. (2024). Towards a New Artificial Intelligence-based Framework for Teachers’ Online Continuous Professional Development Programs: Systematic Review. International Journal of Advanced Computer Science and Applications, 15(4), 480–493. https://doi.org/10.14569/IJACSA.2024.0150450

Gao, T., Gao, S., Xu, J., & Zhao, Q. (2023). DDRCN: Deep Deterministic Policy Gradient Recommendation Framework Fused with Deep Cross Networks. Applied Sciences (Switzerland), 13(4). https://doi.org/10.3390/app13042555

Gherardini, L., Varma, V. R., Capała, K., Woods, R. F., & Sousa, J. L. R. (2024). CACTUS: A Comprehensive Abstraction and Classification Tool for Uncovering Structures. ACM Transactions on Intelligent Systems and Technology, 15(3). https://doi.org/10.1145/3649459

Haris, M., & Głowacz, A. (2022). Navigating an Automated Driving Vehicle via the Early Fusion of Multi-Modality. Sensors, 22(4). https://doi.org/10.3390/s22041425

Hassan, M. R., Alkhalaf, S., Hemeida, A. M., Ahmed, M. E. S., & Mahmoud, E. A. (2023). Artificial intelligent applications for estimating flow network reliability. Ain Shams Engineering Journal, 14(8). https://doi.org/10.1016/j.asej.2022.102055

Hernandez-Torres, S. I., Bedolla, C. N., Berard, D., & Snider, E. J. (2023). An extended focused assessment with sonography in trauma ultrasound tissue-mimicking phantom for developing automated diagnostic technologies. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1244616

Hu, J., Lyu, Z., Yuan, D., He, B., Chen, W., Ye, X., Li, D., & Yang, G. (2023). A Spatiotemporal Intelligent Framework and Experimental Platform for Urban Digital Twins. Virtual Reality and Intelligent Hardware, 5(3), 213–231. https://doi.org/10.1016/j.vrih.2022.08.018

Hussien, F. T. A., Rahma, A. M. S., & Abdulwahab, H. B. (2021). An e‐commerce recommendation system based on dynamic analysis of customer behavior. Sustainability (Switzerland), 13(19). https://doi.org/10.3390/su131910786

Iwashokun, O. A., & Ade-Ibijola, A. O. (2022). Structural Vetting of Academic Proposals. International Journal of Advanced Computer Science and Applications, 13(7), 772–782. https://doi.org/10.14569/IJACSA.2022.0130790

Jahir Pasha, M., Rao, C. R. S., Geetha, A., Fernandez, T. F., & Y, K. B. (2023). A VOS analysis of LSTM Learners Classification for Recommendation System. International Journal on Recent and Innovation Trends in Computing and Communication, 11, 179–187. https://doi.org/10.17762/ijritcc.v11i2s.6024

Jeon, J., Almatrood, A. F., & Kim, H. (2023). Multi-Layered QCA Content-Addressable Memory Cell Using Low-Power Electronic Interaction for AI-Based Data Learning and Retrieval in Quantum Computing Environment. Sensors, 23(1). https://doi.org/10.3390/s23010019

Jung, J., & Lee, S. W. (2023). Security Requirement Recommendation Method Using Case-Based Reasoning to Prevent Advanced Persistent Threats. Applied Sciences (Switzerland), 13(3). https://doi.org/10.3390/app13031505

Karouani, Y., & Elgarej, M. (2022). Milk-run collection monitoring system using the internet of things based on swarm intelligence. International Journal of Information Systems and Supply Chain Management, 15(3). https://doi.org/10.4018/IJISSCM.290018

Khan, S., Tomar, S., Fatima, M., & Zaheen Khan, M. Z. (2022). Impact of artificial intelligent and industry 4.0 based products on consumer behaviour characteristics: A meta-analysis-based review. Sustainable Operations and Computers, 3, 218–225. https://doi.org/10.1016/j.susoc.2022.01.009

Khouibiri, N., Farhaoui, Y., & el Allaoui, A. (2023). Design and Analysis of a Recommendation System Based on Collaborative Filtering Techniques for Big Data. Intelligent and Converged Networks, 4(4), 296–304. https://doi.org/10.23919/ICN.2023.0024

Kitchenham, B. (2004). Procedures for performing systematic reviews (Joint Technical Report, Keele University Technical Report TR/SE-0401 dan NICTA Technical Report 0400011T.1). Keele University, UK.

Ko, H., Lee, S., Park, Y., & Choi, A. (2022). A Survey of Recommendation Systems: Recommendation Models, Techniques, and Application Fields. Electronics, 11(1), 141. https://doi.org/10.3390/electronics11010141

Kumar, A., Grüning, B. A., & Backofen, R. (2023). Transformer-based tool recommendation system in Galaxy. BMC Bioinformatics, 24(1). https://doi.org/10.1186/s12859-023-05573-w

Lee, P., Chen, T., Liu, C., Wang, C., Huang, G., & Lu, N. (2022). Identifying the Posture of Young Adults in Walking Videos by Using a Fusion Artificial Intelligent Method. Biosensors, 12(5). https://doi.org/10.3390/bios12050295

Li, J., Cairns, B. J., Li, J., & Zhu, T. (2023). Generating synthetic mixed-type longitudinal electronic health records for artificial intelligent applications. Npj Digital Medicine, 6(1). https://doi.org/10.1038/s41746-023-00834-7

Louis, J. V., Noerlina, & Syahchari, D. H. (2024). DIGITAL BUSINESS TRANSFORMATION: ANALYSIS OF THE EFFECT ARTIFICIAL INTELLIGENCE IN E-COMMERCE’S PRODUCT RECOMMENDATION. Advanced Information Systems, 8(1), 64–69. https://doi.org/10.20998/2522-9052.2024.1.08

Lutfiani, N., Wijono, S., Rahardja, U., Iriani, A., Aini, Q., & Septian, R. A. D. (2023). A Bibliometric Study : Recommendation based on Artificial Intelligence for iLearning Education. APTISI Transactions on Technopreneurship, 5(2), 109–117. https://doi.org/10.34306/att.v5i2.279

Mahasneh, J. K., & Almigbel, T. (2024). A New Building Information Modeling Probabilistic Model Based On Artificial Intelligence to Optimize Residential Buildings Energy Efficiency in Jordan. Future Cities and Environment, 10(1). https://doi.org/10.5334/fce.255

Majjate, H., Bellarhmouch, Y., Jeghal, A., Ali, Y., Tairi, H., & Zidani, K. A. (2024). AI-Powered Academic Guidance and Counseling System Based on Student Profile and Interests. Applied System Innovation, 7(1). https://doi.org/10.3390/asi7010006

Manjate, E. P. A., Okada, N., Ohtomo, Y., Adachi, T., Bene, B. M., Arima, T., & Kawamura, Y. (2024). An AI-Based Approach for Developing a Recommendation System for Underground Mining Methods Pre-Selection. Mining, 4(4), 747–765. https://doi.org/10.3390/mining4040042

Mohammed, A. S., Almawla, A. S., & Thameel, S. S. (2022). Prediction of Monthly Evaporation Model Using Artificial Intelligent Techniques in the Western Desert of Iraq-Al-Ghadaf Valley. Mathematical Modelling of Engineering Problems, 9(5), 1261–1270. https://doi.org/10.18280/mmep.090513

Morozevich, E. S., Korotkikh, V. S., & Kuznetsova, Y. A. (2022). The development of a model for a personalized learning path using machine learning methods. Business Informatics, 16(2), 21–35. https://doi.org/10.17323/2587-814X.2022.2.21.35

Nguyen, T. P., Jung, J., Yoo, Y., Choi, S. H., & Yoon, J. (2022). Intelligent Evaluation of Global Spinal Alignment by a Decentralized Convolutional Neural Network. Journal of Digital Imaging, 35(2), 213–225. https://doi.org/10.1007/s10278-021-00533-3

Noori, M. N., Ahamed, J., & Ahmed, M. (2024). Matrix Factorization and Cosine Similarity Based Recommendation System For Cold Start Problem in E-Commerce Industries. International Journal of Computing and Digital Systems, 15(1), 773–787. https://doi.org/10.12785/ijcds/150156

Oise, G. P., & Konyeha, S. (2024). Deep Learning System for E-Waste Management †. Engineering Proceedings, 67(1). https://doi.org/10.3390/engproc2024067066

Omar, H. K., Frikha, M., & Jumaa, A. K. (2023). Big data cloud-based recommendation system using NLP techniques with machine and deep learning. Telkomnika (Telecommunication Computing Electronics and Control), 21(5), 1076–1083. https://doi.org/10.12928/TELKOMNIKA.v21i5.24889

Omar, H. K., Frikha, M., & Jumaa, A. K. (2024). PyTorch and TensorFlow Performance Evaluation in Big data Recommendation System. Ingenierie Des Systemes d’Information, 29(4), 1357–1364. https://doi.org/10.18280/isi.290411

Orlova, E. v. (2024). Artificial Intelligence-Based System for Retinal Disease Diagnosis. Algorithms, 17(7). https://doi.org/10.3390/a17070315

Oyejide, A. J., Akinlabi, A. A., Atoyebi, E. O., Falola, P. B., Awonusi, A. A., & Owolabi, F. M. (2023). COVID-19 CRISIS ERA; ENGINEERING INTERVENTIONS IN SUB-SAHARAN AFRICA. Nigerian Journal of Technology, 42(3), 389–398. https://doi.org/10.4314/njt.v42i3.12

Özbek, A., Altuntaş, V., & Erdoğan, N. (2024). APPLICATION OF DEVELOPING CLOTHING RECOMMENDATION SYSTEM WITH ARTIFICIAL INTELLIGENCE TECHNIQUES; YAPAY ZEKA TEKNİKLERİ İLE GELİŞTİRİLEN GİYİM ÖNERİ SİSTEMİNİN UYGULANMASI. Tekstil ve Muhendis, 31(136), 241–252. https://doi.org/10.7216/teksmuh.1541815

Papadopoulos, C., Castro, N., Nigath, A., Davidson, R., Faulkes, N., Menicatti, R., Khaliq, A. A., Recchiuto, C. T., Battistuzzi, L., Randhawa, G., Merton, L., Kanoria, S., Chong, N., Kamide, H., Hewson, D. J., & Sgorbissa, A. (2022). The CARESSES Randomised Controlled Trial: Exploring the Health-Related Impact of Culturally Competent Artificial Intelligence Embedded Into Socially Assistive Robots and Tested in Older Adult Care Homes. International Journal of Social Robotics, 14(1), 245–256. https://doi.org/10.1007/s12369-021-00781-x

Park, H., Suh, H., Kim, J., & Choo, S. (2023). Floor plan recommendation system using graph neural network with spatial relationship dataset. Journal of Building Engineering, 71. https://doi.org/10.1016/j.jobe.2023.106378

Park, H., Yong, S., You, Y., Lee, S., & Moon, I.-Y. (2022). Automatic Movie Tag Generation System for Improving the Recommendation System. Applied Sciences (Switzerland), 12(21). https://doi.org/10.3390/app122110777

Poduval, P. P., Ni, Y., Zou, Z., Ni, K., & Imani, M. (2024). NetHD: Neurally Inspired Integration of Communication and Learning in Hyperspace. Advanced Intelligent Systems, 6(7). https://doi.org/10.1002/aisy.202300841

Rego, A., González Ramírez, P. L., Jimenez, J. M., & Lloret, J. (2022). Artificial intelligent system for multimedia services in smart home environments. Cluster Computing, 25(3), 2085–2105. https://doi.org/10.1007/s10586-021-03350-z

Ribino, P. (2023). The role of politeness in human–machine interactions: a systematic literature review and future perspectives. Artificial Intelligence Review, 56, 445–482. https://doi.org/10.1007/s10462-023-10540-1

Rosalina, Sengkey, A., Sahuri, G., & Mandala, R. (2023). Generating intelligent agent behaviors in multi-agent game AI using deep reinforcement learning algorithm. International Journal of Advances in Applied Sciences, 12(4), 396–404. https://doi.org/10.11591/ijaas.v12.i4.pp396-404

Sabir, Z., ben Saïd, S., & Al-Mdallal, Q. M. (2024). Artificial intelligent solvers for the HIV-1 system including AIDS based on the cancer cells. Intelligent Systems with Applications, 21. https://doi.org/10.1016/j.iswa.2023.200309

Sarai, R., Trombini-Souza, F., Gomes de Moura, V. T., Caldas, R. R., & Buarque, F. (2022). Classification of Older Adults Undergoing Two Dual-Task Training Protocols Based on Artificial Intelligent Methods. IEEE Access, 10, 3066–3073. https://doi.org/10.1109/ACCESS.2021.3139527

Schöning, J., & Pfisterer, H. J. (2023). Safe and Trustful AI for Closed-Loop Control Systems. Electronics (Switzerland), 12(16). https://doi.org/10.3390/electronics12163489

Shatiry, M. S. A., Ros, I. M., Matlan, M. N., Shafiqah, F., Chelliah, N., & Abdul Rahim, Z. (2024). Artificial Intelligence HSE Monitoring & Digital Value Stream Mapping for Prefabrication Yard. International Journal of Integrated Engineering, 16(8), 134–142. https://doi.org/10.30880/ijie.2024.16.08.014

Simoiu, M. S., Fagarasan, I. I., Ploix, S., & Calofir, V. (2023). Managing human involvement in an energy community: Application to a subway station. Sustainable Cities and Society, 95. https://doi.org/10.1016/j.scs.2023.104597

Sridhar, V., & Emalda Roslin, S. (2022). Energy Efficient Device to Device Data Transmission Based on Deep Artificial Learning in 6G Networks. International Journal of Computer Networks and Applications, 9(5), 568–577. https://doi.org/10.22247/ijcna/2022/215917

Stavropoulos, G., Violos, J., Tsanakas, S., & Leivadeas, A. (2023). Enabling Artificial Intelligent Virtual Sensors in an IoT Environment. Sensors, 23(3). https://doi.org/10.3390/s23031328

Stephanie, V., Khalil, I., Atiquzzaman, M., & Yi, X. (2023). Trustworthy Privacy-Preserving Hierarchical Ensemble and Federated Learning in Healthcare 4.0 With Blockchain. IEEE Transactions on Industrial Informatics, 19(7), 7936–7945. https://doi.org/10.1109/TII.2022.3214998

Subha, S., Baghavathi Priya, S., Anitha, G., S, S. S., & Bavirisetti, D. P. (2023). Personalization-based deep hybrid E-learning model for online course recommendation system. PeerJ Computer Science, 9. https://doi.org/10.7717/peerj-cs.1670

Suseela, M. S. U., & Murthy, K. S. N. (2022). Architectures and circuit design techniques of receivers suitable for AI-enabled IoT applications. International Journal of Systems, Control and Communications, 13(1), 44–55. https://doi.org/10.1504/IJSCC.2022.119715

Syed, M. H., Huy, T. Q. B., & Chung, S. (2022). Context-Aware Explainable Recommendation Based on Domain Knowledge Graph. Big Data and Cognitive Computing, 6(1). https://doi.org/10.3390/bdcc6010011

Tiryaki, A. M., & Yücebaş, S. C. (2023). AN ONTOLOGY BASED PRODUCT RECOMMENDATION SYSTEM FOR NEXT GENERATION E-RETAIL. Journal of Organizational Computing and Electronic Commerce, 33(1–2), 1–21. https://doi.org/10.1080/10919392.2023.2226542

Tong, H., Cao, C., You, M., Han, S., Liu, Z., Xiao, Y., He, W., Liu, C., Peng, P., Xue, Z., Gong, Y., Yao, C., & Xu, F. (2022). Artificial intelligence-assisted colorimetric lateral flow immunoassay for sensitive and quantitative detection of COVID-19 neutralizing antibody. Biosensors and Bioelectronics, 213. https://doi.org/10.1016/j.bios.2022.114449

Ullah, Z., Odeh, A. H., Khattak, I. U. H., & al Hasan, M. J. B. (2023). Enhancement of Pre-Trained Deep Learning Models to Improve Brain Tumor Classification. Informatica (Slovenia), 47(6), 165–172. https://doi.org/10.31449/inf.v47i6.4645

Xiang, S., Niu, Z., & Wu, Y. (2022). Research on Handicraft Design Based on Artificial Intelligence Technology in Complex Environments. Wireless Communications and Mobile Computing, 2022. https://doi.org/10.1155/2022/1538488

Xing, Y., Kar, P., Bird, J. J., Sumich, D. A., Knight, A. D., Lotfi, A., & Carpenter van Barthold, B. (2024). Developing an AI-Based Digital Biophilic Art Curation to Enhance Mental Health in Intelligent Buildings. Sustainability (Switzerland), 16(22). https://doi.org/10.3390/su16229790

Xu, H., Seng, K. P., Ang, K. L. M., & Smith, J. S. (2024). Decentralized and Distributed Learning for AIoT: A Comprehensive Review, Emerging Challenges, and Opportunities. IEEE Access, 12, 101016–101052. https://doi.org/10.1109/ACCESS.2024.3422211

Xu, H., Seng, K. P., Smith, J. S., & Ang, K. L. M. (2024). Multi-Level Split Federated Learning for Large-Scale AIoT System Based on Smart Cities. Future Internet, 16(3). https://doi.org/10.3390/fi16030082

Xue, X., & Jia, Z. (2022). The Piano-Assisted Teaching System Based on an Artificial Intelligent Wireless Network. Wireless Communications and Mobile Computing, 2022. https://doi.org/10.1155/2022/5287172

Yaiprasert, C., & Hidayanto, A. N. (2023). AI-driven ensemble three machine learning to enhance digital marketing strategies in the food delivery business. Intelligent Systems with Applications, 18. https://doi.org/10.1016/j.iswa.2023.200235

Yang, H., & Ren, X. (2024). Design and Development of a Rural Tourism Marketing System Using Deep Learning. IEEE Access, 12, 64795–64806. https://doi.org/10.1109/ACCESS.2024.3396081

Yang, M., Ren, X., & Cho, J. (2023). Nonlinear controller supported by artificial intelligence of the rheological damper system reducing vibrations of a marine engine. Journal of Low Frequency Noise Vibration and Active Control, 42(4), 1919–1936. https://doi.org/10.1177/14613484231187780

Yang, W., Zhuang, J., Tian, Y., Wan, S., Ding, S., Zhang, M., & Fang, S. (2023). Technical Scheme for Cutting Seedlings of Cyclocarya paliurus under Intelligent Control of Environmental Factors. Sustainability (Switzerland), 15(13). https://doi.org/10.3390/su151310690

Yap, Z. T., Haw, S. C., & Ruslan, N. E. (2024). Hybrid-based food recommender system utilizing KNN and SVD approaches. Cogent Engineering, 11(1). https://doi.org/10.1080/23311916.2024.2436125

Yun, J., & Park, T. (2023). An Analysis of University Students’ Needs for Learning Support Functions of Learning Management System Augmented with Artificial Intelligence Technology. KSII Transactions on Internet and Information Systems, 17(1), 1–15. https://doi.org/10.3837/tiis.2023.01.001

Zdravković, M., & Panetto, H. (2022). Artificial intelligence-enabled enterprise information systems. Enterprise Information Systems 16(5). Taylor and Francis Ltd. https://doi.org/10.1080/17317373.2021.1973570

Zeller, F., & Dwyer, L. J. (2022). Systems of collaboration: challenges and solutions for interdisciplinary research in AI and social robotics. Discover Artificial Intelligence, 2(1). https://doi.org/10.1007/s44163-022-00027-3

Downloads

Published

30-01-2026

Issue

Section

Articles

How to Cite

A Systematic Literature Review on AI Architecture Frameworkfor Product Analysis & Recommendation System in Electronic Service. (2026). SITEKNIK: Sistem Informasi, Teknik Dan Teknologi Terapan, 3(1), 32-46. https://doi.org/10.5281/zenodo.18431166

Share

Similar Articles

11-20 of 32

You may also start an advanced similarity search for this article.