Rancangan Arsitektur Sistem Analisis Sentimen Kinerja POLRI Berbasis Cloud PaaS dan IndoBERT

Authors

  • Novantri Prasetya Putra Telkom University, Indonesia Author

DOI:

https://doi.org/10.5281/zenodo.18366548

Keywords:

Analisis Sentimen, IndoBERT, AHP, Cloud Computing, PaaS, Kinerja POLRI

Abstract

Pada era ini, kepercayaan publik terhadap institusi penegak hukum seperti POLRI sangat dipengaruhi oleh opini yang berkembang di media sosial. Namun, analisis terhadap data masif (Big Data) ini menghadapi dua tantangan utama yaitu keterbatasan metode klasik dalam memahami konteks bahasa Indonesia (seperti sarkasme dan bahasa gaul) serta tingginya kebutuhan sumber daya komputasi untuk menjalankan model Deep Learning. Penelitian ini bertujuan untuk merancang sebuah kerangka kerja sistem analisis sentimen terintegrasi yang tidak hanya akurat, tetapi juga efisien secara infrastruktur dan strategis dalam pengambilan keputusan. Metodologi penelitian ini menggabungkan model IndoBERT untuk klasifikasi teks kontekstual, metode Analytic Hierarchy Process (AHP) untuk pembobotan prioritas kinerja, dan arsitektur Cloud Platform as a Service (PaaS) sebagai lingkungan implementasi. Hasil penelitian ini berupa rancangan arsitektur sistem yang memanfaatkan layanan serverless dan GPU berbasis cloud untuk efisiensi biaya dan skalabilitas otomatis. Simulasi sistem menunjukkan bahwa integrasi IndoBERT mampu mendeteksi sentimen negatif terselubung, sementara AHP berhasil mentransformasi data sentimen menjadi daftar prioritas perbaikan yang dapat ditindaklanjuti (actionable insights). Penelitian ini menyimpulkan bahwa adopsi arsitektur berbasis Cloud PaaS adalah solusi paling layak (feasible) untuk mengimplementasikan model NLP mutakhir di lingkungan pemerintahan tanpa investasi perangkat keras yang masif.

Downloads

Download data is not yet available.

References

Aprinando, A., Simarmata, P., & Sasongko, T. B. (2025). Sentiment Analysis on BRImo Application Reviews Using IndoBERT. In Journal of Applied Informatics and Computing (JAIC) (Vol. 9, Issue 3). http://jurnal.polibatam.ac.id/index.php/JAIC

Asmoro, D., & Riswadi. (2024). Legal Deliberation and Police Reform To Increase Transparency and Accountability In Law Enforcement (Vol. 3). https://edunity.publikasikupublisher.com

Azzabi, S., Alfughi, Z., & Ouda, A. (2024). Data Lakes: A Survey of Concepts and Architectures. In Computers (Vol. 13, Issue 7). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/computers13070183

Cahyawijaya, S., Lovenia, H., Fikri Aji, A., Indra Winata, G., Wilie, B., Koto, F., Mahendra, R., Wibisono, C., Romadhony, A., Vincentio, K., Santoso, J., Moeljadi, D., Wirawan, C., Hudi, F., Satrio Wicaksono, M., Halim Parmonangan, I., Alfina, I., Firdausi Putra, I., Rahmadani, S., … Authors, M. (2023). NusaCrowd: Open Source Initiative for Indonesian NLP Resources. Association for Computational Linguistics. https://indonlp.github.io/

Costa, C. J., Aparicio, M., Aparicio, S., & Aparicio, J. T. (2024). The Democratization of Artificial Intelligence: Theoretical Framework. Applied Sciences (Switzerland), 14(18). https://doi.org/10.3390/app14188236

Dhendra, & Gayuh Utomo, V. (2025). Benchmarking IndoBERT and Transformer Models for Sentiment Classification on Indonesian E-Government Service Reviews. Jurnal Transformatika, 23(1), 86–95. https://doi.org/10.26623/transformatika.v23i1.12095

Geni, L., Yulianti, E., & Sensuse, D. I. (2023). Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using Bert Language Models. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 9(3), 746–757. https://doi.org/10.26555/jiteki.v9i3.26490

Gumilang, M. A., Abdillah, F., Amin, M. Y., & Hasan, M. (2024). Sentiment Analysis of Indonesian Ministries Social Media: Citizen Responses Utilizing TextBlob Analyser. Jurnal Sosioteknologi, 23(2), 203–216. https://doi.org/10.5614/sostek.itbj.2024.23.2.5

Hafizah, R., Saragih, T. H., Muliadi, M., Indriani, F., & Mazdadi, M. I. (2025). Machine Learning Implementation for Sentiment Analysis on X/Twitter: Case Study of Class Of Champions Event in Indonesia. Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, 7(2), 370–386. https://doi.org/10.35882/ijeeemi.v7i2.81

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D. de Las, Hendricks, L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican, K., Driessche, G. van den, Damoc, B., Guy, A., Osindero, S., Simonyan, K., Elsen, E., … Sifre, L. (2022). Training Compute-Optimal Large Language Models. http://arxiv.org/abs/2203.15556

Ilmi, M. H., & Puspitarani, Y. (2024). Visualization of Sentiment Analysis Results of Public Opinion on Indonesian Public Figures in Electronic Media and Social Media. Proceedings of the Widyatama International Conference on Engineering 2024 (WICOENG 2024). https://doi.org/10.2991/978-94-6463-618-5_34

Jonnala, N. S., Ram Teja, A. V. S., Rajeswari, S. R., Jakeer, S., Dheeraj, A., Bansal, S., Prakash, K., Singh, S., Faruque, M. R. I., & Al-mugren, K. S. (2025). Leveraging hybrid model for accurate sentiment analysis of Twitter data. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-09794-2

Koto, F., Rahimi, A., Lau, J. H., & Baldwin, T. (2020). IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP. COLING 2020 - The 28th International Conference on Computational Linguistics. https://huggingface.co/

Kumar C, Y. (2024). Review of Cloud Migration Strategies: Exploring Advantages, Challenges and Cost Analysis. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 08(06), 1–5. https://doi.org/10.55041/IJSREM35549

Kumar, L., Sharma, J., & Kaur, R. (2022). Catalytic Performance of Cow-Dung Sludge in Water Treatment Mitigation and Conversion of Ammonia Nitrogen into Nitrate. Sustainability (Switzerland), 14(4). https://doi.org/10.3390/su14042183

Kutzner, C., Kniep, C., Cherian, A., Nordstrom, L., Grubmüller, H., De Groot, B. L., & Gapsys, V. (2022). GROMACS in the Cloud: A Global Supercomputer to Speed Up Alchemical Drug Design. Journal of Chemical Information and Modeling, 62(7), 1691–1711. https://doi.org/10.1021/acs.jcim.2c00044

Li, H., Ota, K., Dong, M., Vasilakos, A. V., & Nagano, K. (2020). Multimedia Processing Pricing Strategy in GPU-Accelerated Cloud Computing. IEEE Transactions on Cloud Computing, 8(4), 1264–1273. https://doi.org/10.1109/TCC.2017.2672554

Md Suhaimin, M. S., Ahmad Hijazi, M. H., Moung, E. G., Nohuddin, P. N. E., Chua, S., & Coenen, F. (2023). Social media sentiment analysis and opinion mining in public security: Taxonomy, trend analysis, issues and future directions. In Journal of King Saud University - Computer and Information Sciences (Vol. 35, Issue 9). King Saud bin Abdulaziz University. https://doi.org/10.1016/j.jksuci.2023.101776

Nawrocki, P., & Osypanka, P. (2021). Cloud Resource Demand Prediction using Machine Learning in the Context of QoS Parameters. Journal of Grid Computing, 19(2). https://doi.org/10.1007/s10723-021-09561-3

Oluwatobi, H. (2023). Cloud Computing and the Democratization of Artificial Intelligence in Business. https://www.researchgate.net/publication/391163241

Puspasari, H. M., Mustaqim, I. Z., Utami, A. T., Syalevi, R., & Ruldeviyani, Y. (2024). Evaluation of Indonesia’s police public service platforms through sentiment and thematic analysis. IAES International Journal of Artificial Intelligence, 13(2), 1596–1607. https://doi.org/10.11591/ijai.v13.i2.pp1596-1607

Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L., Alyafeai, Z., Chaffin, A., Stiegler, A., Scao, T. Le, Raja, A., Dey, M., Bari, M. S., Xu, C., Thakker, U., Sharma, S. S., Szczechla, E., Kim, T., Chhablani, G., Nayak, N., … Rush, A. M. (2022). Multitask Prompted Training Enables Zero-Shot Task Generalization. ICLR 2022. http://arxiv.org/abs/2110.08207

Seritan, S., Thompson, K., & Martínez, T. J. (2020). Tera Chem Cloud: A High-Performance Computing Service for Scalable Distributed GPU-Accelerated Electronic Structure Calculations. Journal of Chemical Information and Modeling, 60(4), 2126–2137. https://doi.org/10.1021/acs.jcim.9b01152

Shojaee Rad, Z., & Ghobaei-Arani, M. (2024). Data pipeline approaches in serverless computing: a taxonomy, review, and research trends. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00939-0

Sri Nandhini, A. R., & Joseph, A. (2020). Impact of Implementing Cloud Native Applications in Replacement to on-Premise Applications. International Journal of Engineering Research & Technology (IJERT). www.ijert.org

Wulf, F., Dresden, T. U., Lindner, T., Westner, M., Regensburg, O., & Strahringer, S. (2021). IaaS, PaaS, or SaaS? The Why of Cloud Computing Delivery Model Selection-Vignettes on the Post-Adoption of Cloud Computing. Proceedings of the 54th Hawaii International Conference on System Sciences. https://hdl.handle.net/10125/71378

Published

30-01-2026

Issue

Section

Articles

How to Cite

Rancangan Arsitektur Sistem Analisis Sentimen Kinerja POLRI Berbasis Cloud PaaS dan IndoBERT. (2026). SITEKNIK: Sistem Informasi, Teknik Dan Teknologi Terapan, 3(1), 10-21. https://doi.org/10.5281/zenodo.18366548

Share

Similar Articles

11-18 of 18

You may also start an advanced similarity search for this article.